

This article assumes you're familiar with C++
Download the code (41KB)

Internet Client SDK Part II:
Dress Your Applications for
Success with WinInet
Aaron Skonnard

Although WinInet has been around for a while, many programmers still shy
away from it. Perhaps all they ever needed was a clear, concise overview of
the API.
Web browsing objects give your Microsoft® Windows®-based application the ability to
act as a custom Web browser. As my first article on the Internet Client SDK showed
("Boning up on the Internet Client SDK Part I: Web Browsing Objects," MIND, October
1997), this strategy can be used only for the object's exposed properties and methods. If
your application needs more flexibility, such as direct access to Internet-based APIs, the
WinInet API is the interface you'll need.
WinInet has been around for a while. In fact, there have already been a few articles in

MIND devoted to the subject. Back in the Spring 1996 issue of MIND, Matthew Powell,
Leon Braginski, and Jeffrey Richter all discussed some portion of the WinInet functionality.
In the May 1997 issue of MIND, Steve Zimmerman discussed using WinInet in ActiveX™
controls (see Designing ActiveX Components Part II: Implementing Internet
Communication with WinInet). Since the demand for Internet integration continues to
increase, WinInet deserves more attention. In this article, I'll give a brief overview of the
WinInet architecture and how to get started with it. Then I'll go into more detail on dial-up
connections, general Internet functions, URLs, HTTP, FTP, and Gopher. Finally, I'll show
you how to use the Visual C++® WinInet classes in a sample FTP client application.

WinInet Overview

WinInet is a high-level interface to the more complicated underlying Internet protocols

(including HTTP, FTP, and Gopher). WinInet allows your application to act as an HTTP,
FTP, or Gopher client without its having to understand or, more importantly, keep up with
the ever-evolving protocol standards. If you use WinInet in your applications, when
standards change you can let WinInet worry about the changes while your interface to the
protocol remains the same. (To learn more about the protocol standards, see the RFC
documents at http://www.rs.internic.net.) WinInet can be used to write product-ordering
systems, stock tickers/analyzers, online banking systems, FTP clients, your own Internet
browser, and so on. The possibilities are endless.

Figure 1: Sending and receiving information with WinInet

Figure 1 illustrates how information is sent and received using the WinInet API. The
Windows-based application calls into WinInet.dll. WinInet is then responsible for
contacting the server and receiving a response. Once WinInet receives the response, the

페이지 1 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

application can begin using the API—simple as that.
Before WinInet, adding Internet communications to Windows-based applications required

expertise in sockets and protocol specifications. Even simple communications required
considerable development time. WinInet lets you quickly and easily add Internet
communications to your applications and even make them compatible with server-side
scripts developed with CGI, ASP, and ISAPI. For example, let's assume you already have a
server-side script set up for access via a browser and you want to use the same script
from a wizard in your application. You can use WinInet to send the information gathered
from the wizard dialogs back to your Web server with an HTTP POST request. Using this
approach, a single server-side script can process requests made from both a browser and
your Windows-based application.
To use the WinInet API, you need to include WinInet.h in your source files and link

against WinInet.lib. Assuming you've installed the Internet Client SDK, you'll probably
want to add INetSDK Path\Include to your compiler's include path and INetSDK Path\Lib
to your compiler's lib path. If you have problems compiling or linking once you've added
calls to WinInet functions, make sure these files are where you think they are.

Internet Sessions

WinInet gives your application the ability to host Internet sessions. An Internet session

generally consists of the following three steps: connecting to the Internet, sending and
receiving information using HTTP, FTP, or Gopher, and closing the connection.
How you'll connect to the Internet depends mostly on the target machine's Internet

connection. If it's on a LAN with a direct connection to the net, verifying the connection is
all that is necessary. Upon verification, the application is ready to start sending and
receiving information. If the target machine uses dial-up networking to connect to the
Internet, your application is responsible for initiating and verifying a successful dial-up
connection.
In the second step (sending and receiving information using HTTP, FTP, or Gopher), you

can use the same code for either connection scenario. Once you've established a valid
Internet connection, WinInet does not distinguish between calls made across a LAN and
calls made across a dial-up connection.
The last step, closing the connection, is a little easier if the target machine is connected

to a LAN. You simply need to close all open Internet handles by calling
InternetCloseHandle. If the machine uses dial-up networking, you may also need to
disconnect the dial-up networking connection.
Generally, it's a good idea to plan for the worst-case scenario and not make any

assumptions about the target machine's Internet connection. And with WinInet's new dial-
up functions it's a snap to handle the process of establishing a dial-up networking
connection.

Dial-Up and Autodial Functions

 Figure 2 describes the new WinInet dial-up functions. Before the Microsoft Internet

Explorer (IE) 4.0 Preview 2 release, WinInet offered only two dial-up functions:
InternetAttemptConnect and InternetCheckConnection. InternetAttemptConnect checks to
see if there is a connection to the Internet. If there isn't a connection, it displays the dial-
up networking dialog box and allows the user to connect to an ISP.
InternetCheckConnection determines whether a connection to the Internet already exists
by trying to ping the server designated by a URL passed to the function.
While InternetAttemptConnect and InternetCheckConnection may be sufficient for many

situations, both are somewhat limited. The problem with InternetAttemptConnect is that it
requires (or at least used to before the new Connection Manager) user intervention to
establish the connection. This is a problem if you want to give your program the ability to
schedule a connection for the middle of the night to download a huge file. In my opinion,
anything that requires user intervention is very limiting to both the programmer and the

페이지 2 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

user. InternetCheckConnection is also of limited use. Sure, it determines whether a
connection to the Internet exists, but it cannot tell you anything about the type of
connection.
IE 4.0 Preview 2 introduced seven more WinInet dial-up functions that improve upon the

earlier two. InternetGetConnectedState provides the information that
InternetCheckConnection lacked by determining the type of Internet connection being
used. It can figure out whether the connection is over a modem, on a LAN, or even
through a proxy. You simply pass in a combination of the following values, which
represents the type of connection you're testing for:

INTERNET_CONNECTION_MODEM
INTERNET_CONNECTION_LAN
INTERNET_CONNECTION_PROXY

It returns a Boolean indicating whether that type of connection is in use.

Figure 3: Connection Manager

InternetAutodial is a simple solution to the user-intervention problem. It allows you to
initiate an unattended connection by using the user's default dial-up networking entry.
Figure 3 shows the Connection Manager's nifty new dialog as displayed by
InternetAutodial. Internet-Dial is even more flexible; you can specify which dial-up
networking entry to use and how you want to make the connection. Like InternetAutodial,
Internet-Dial is capable of making unattended connections. It even goes one step further
and provides a flag (INTERNET_ DIAL_UNATTENDED) to turn off the dial-up UI completely.
For example, this code establishes an unattended connection, if the user isn't already

connected, using any of the mentioned connection types:

 DWORD dwConnectionTypes = INTERNET_CONNECTION_LAN |
 INTERNET_CONNECTION_MODEM |
 INTERNET_CONNECTION_PROXY;
 if (!InternetGetConnectedState(&dwConnectionTypes, 0))
 {
 InternetAutodial(INTERNET_AUTODIAL_FORCE_UNATTENDED,
 0);
 }

As you can see, these new functions have greatly improved the dial-up capabilities of
WinInet and provide an easy interface to Microsoft's dial-up services. If you've ever
written your own dial-up (RAS) utilities, you'll appreciate this new addition to the API.

General Internet Functions

페이지 3 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

Before I start exploring the general WinInet Internet functions, let me mention one

common pitfall. Many developers begin using these functions, but can't get anything to
work because they don't have a valid TCP/IP connection. This means more than just
establishing a dial-up connection. You must also make sure that your network and dial-up
settings are configured properly. If you're not sure, contact your ISP. A simple way to
verify this is to open IE 4.0 and navigate to http://www.microsoft.com. If your browser
can successfully navigate to Microsoft's site, you shouldn't have any problems using
WinInet. If the browser fails to find the site, check your connection and solve the problem
before venturing into the world of WinInet. It will save you a lot of headaches.
InternetOpen is the mother of all WinInet Internet functions (see Figure 4). Take a look

at InternetOpen's function declaration:

 HINTERNET InternetOpen(
 IN LPCSTR lpszAgent,
 IN DWORD dwAccessType,
 IN LPCSTR lpszProxyName,
 IN LPCSTR lpszProxyBypass,
 IN DWORD dwFlags
);

If you're developing a Web site to communicate with your Windows-based application,
you'll want to pay special attention to the first parameter, lpszAgent. This should contain
the address of a string that identifies your application to the Web server. With this
information, your Web server can recognize requests made by your application and, if
desired, can customize the response to better fit your needs.

Figure 5: InternetOpen handle hierarchy

Your application must call InternetOpen before calling any other Internet function. This
initializes the Internet DLL, preparing it to receive subsequent Internet calls from your
application. The handle (HINTERNET) returned by InternetOpen is the root node in the
Internet handle hierarchy. The root handle can then be used by InternetConnect and
InternetOpenURL. Next, the handle returned by InternetConnect can be used by
FtpOpenFile, Ftp- FindFirstFile, HttpOpenRequest, GopherOpenFile, and
GopherFindFirstFile (see Figure 5). HTTP, FTP, and Gopher all have their own handle
hierarchies as well. Get the idea? Appendix A in the WinInet section of the Internet Client
SDK documentation provides detailed diagrams of the entire Internet handle hierarchy.
Now let's take a look at the second-highest function in the Internet handle hierarchy,

InternetConnect:

 HINTERNET InternetConnect(
 IN HINTERNET hInternetSession,
 IN LPCSTR lpszServerName,
 IN INTERNET_PORT nServerPort,
 IN LPCSTR lpszUsername,

페이지 4 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

 IN LPCSTR lpszPassword,
 IN DWORD dwService,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

InternetConnect should be used to establish a connection with a service on the Web
server. The service specified by dwService can be HTTP, FTP, or Gopher. The type of
service that you connect to determines what types of functions you'll be able to call with
the returned handle. You also need to specify the server name and port. The server name
can either be the host name (such as www.microsoft.com) or the IP address of the server.
As for the port value, you can either specify it yourself or use the default port for the
requested service.
Once you've successfully established a connection with a service, you can start using the

functions related to it.

 HINTERNET hSession;
 hSession = InternetOpen("MyApp", INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, 0);
 if (hSession)
 {
 HINTERNET hService;
 hService = InternetConnect(hSession, "ftp.microsoft.com",
 INTERNET_DEFAULT_FTP_PORT, NULL, NULL,
 INTERNET_SERVICE_FTP, 0, 0);
 if (hService)
 {
 // call ftp functions here using hService
 }
 }
 InternetCloseHandle(hSession);

This example establishes a connection with Microsoft's FTP site. Notice that I passed in
NULL for both the lpszUsername and lpszPassword parameters. Depending on the type of
service you're connecting to, these parameters default to different values. In this case, the
FTP service defaults the lpszUsername parameter to anonymous and lpszPassword to the
user's mail address. After InternetConnect returns a valid handle, I can use that handle to
call the functions in the FTP handle hierarchy.
Whether it's due to a slow connection or a huge file download, Internet operations can

take a considerable amount of time to complete. For that reason, it's very important to
give the user some idea about the status of the operation at hand.
InternetSetStatusCallback and InternetStatusCallback are especially useful for giving the
user feedback during Internet operations. These two functions can display the status of
any Internet request. Use InternetSetStatusCallback to register a callback function with a
specific Internet handle. The registered function will be called each time the status of the
given handle changes. The callback will also be used for any handles derived from the
handle that registered the callback. InternetStatusCallback, on the other hand, is simply a
placeholder for your callback function. It defines what values will be passed to the
registered callback function. The most valuable of these is dwInternetStatus, a DWORD
value containing the current status of the given Internet handle.
If you want your Internet requests to be made asynchronously, an

InternetStatusCallback function is required. To make requests asynchronously, you must
first call InternetOpen with INTERNET_FLAG_ASYNC set. Then, as long as you have an
InternetStatusCallback function registered with the handle returned from InternetOpen, all
requests made on handles derived from InternetOpen's handle will be made
asynchronously. When the callback function receives the
INTERNET_STATUS_REQUEST_COMPLETE status, the Internet operation is complete. If
you don't have an InternetStatusCallback function registered properly, all requests will be
made synchronously regardless of the INTERNET_FLAG_ASYNC flag.
This should give you a good overview of the most important general Internet functions.

It would take a lot more space than I have to discuss all of the general Internet functions
in detail. The WinInet section of the Internet Client SDK documentation does an excellent
job of explaining how the rest of the functions behave.

페이지 5 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

URL Functions

As mentioned, you need to use InternetOpen and InternetConnect to establish a

connection with one of the services on the server (like HTTP, FTP, or Gopher). Once you've
established a connection, you can call the protocol-specific functions belonging to that
service. Let's look at a general approach to using the HTTP, FTP, and Gopher protocols—
the URL functions—before examining how to program them directly.
Figure 6 describes the behavior of each URL function. Of the five functions, only

InternetOpenUrl actually sends and receives information. The other four exist only to
make InternetOpenUrl easier to use. They simplify the process of creating, encoding, and
breaking up Internet URLs.
If you keep your eye on the address box as you navigate around using Internet Explorer

(IE) 4.0, you'll probably notice strange-looking character sequences in some of the URLs.
For example, take a look at the following HTTP URL:

 http:://aarons.axtech.com/register.cgi?name=Aaron%20Skonnard

Notice the ?, &, and % characters found in the URL. If you don't understand what these
characters are for, you're in for a lot of grief when trying to build and send HTTP URLs.
The ? indicates the end of the server-side object location and the beginning of the
name/value parameter pairs. Each name/value pair is separated by an & character. The %
character represents an escape sequence for an unsafe character. Most non-alphanumeric
characters, like blanks and punctuation, are unsafe to use in an URL. For example, the %
20 found in the example URL represents a blank space, which can't be used when passing
an URL. The % symbol tells the Web server that the numbers to follow represent a
character's hex value. When the Web server parses the URL, it knows to translate them
accordingly.
InternetCanonicalizeUrl and In-ternetCombineUrl make URL encoding a piece of cake. In

fact, you can build your URL without worrying about the unsafe characters. Then, before
you send it (using Internet OpenUrl), call InternetCanonicalizeUrl or InternetCombineUrl
and voilà! All unsafe characters will be encoded with hex values. Once you've mastered
the URL creation step, you're ready to call InternetOpenUrl. The main advantage of
InternetOpenUrl is sim-plicity. You can use InternetOpenUrl to send and receive data with
HTTP, FTP, or Gopher, plus you don't have to worry about calling InternetConnect first.
The only thing you really need to understand is how to build the URL for the protocol in
use.

Figure 8: Fetching an HTML file

Take a look at Figure 7, which uses InternetOpenUrl to fetch and display the HTML file
at http://www.microsoft.com/msj. To illustrate how you can use InternetOpenUrl with the
different protocols, I created a simple dialog-based application that allows the user to type
in a URL and fetch the specified file (see Figure 8). The command handler for the
InternetOpenUrl button is almost identical to the example shown previously. I moved the
call to InternetOpen to the dialog's InitInstance so it's only called once. The handle
returned by InternetOpen is used by each call to InternetOpenUrl. I also moved the call to
InternetCloseHandle to the dialog's OnClose method. Finally, I passed the URL edit box
member variable (m_strURL) to Internet OpenUrl.

페이지 6 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

Figure 9: MSJ Web site

Figure 9 shows what IE 4.0 looks like when you type in http://www.microsoft.com/msj.
Figure 10 shows the file that InternetOpenUrl returns, the same HTML file that IE 4.0 is
displaying. If you do the same thing for ftp://ftp.microsoft.com, Figure 11 shows what IE
4.0 displays, and Figure 12 shows the same HTML file returned from InternetOpenUrl.
You could also do this for the Gopher protocol—try gopher://www.byu.edu.

Figure 10: InternetOpenUrl output

페이지 7 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

Figure 11: FTP root at ftp.microsoft.com

페이지 8 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

Figure 12: FTP root raw source

While InternetOpenUrl is simpler than the protocol-specific functions, it is somewhat
limited in functionality. If you're still looking for a more customizable client/server
communications system, you'll want to explore the protocol-specific functions.

FTP, HTTP, and Gopher

WinInet offers a set of functions for each of the three main Internet protocols. Because

there is so much information, I'll only scratch the surface on the FTP and HTTP functions
(see Figures 13 and 14). The WinInet section of the Internet Client SDK documentation
contains complete details on the Gopher protocol (see Figure 15).
The WinInet FTP functions give your application the ability to manipulate files and

directories on an FTP server. There are functions available for creating, removing, and
changing directories as well as for finding, deleting, renaming, downloading, and sending
files (see Figure 13). Remember, before using any of these functions you must already
have established a connection with an FTP server by calling InternetOpen followed by
InternetConnect (using the INTERNET_ SERVICE_FTP flag). Then you typically call
FtpFindFirstFile or FtpSetCurrentDirectory.
Let's look at another example. The code in Figure 16 demonstrates how to download

the README.TXT file found in the developr/visual_c directory on Microsoft's FTP server.
This is a simplified example. It assumes that you know the names and locations of the
files and directories. But it does show you how simple it is to download a file from an FTP
server. Improving this function to accept user input would essentially turn this example
into your very own FTP client.
The HTTP functions described in Figure 14 give you direct control over the behavior of

an HTTP session in general and any HTTP request in particular. To begin using HTTP, first
call InternetOpen and InternetConnect as you did with FTP (except don't forget to pass
INTERNET_SERVICE_HTTP to InternetConnect). Then call HttpOpenRequest to create an
HTTP request handle. This handle stores all of the request properties passed into
HttpOpenRequest. The next step is to call HttpSendRequest. HttpSendRequest actually
requests the specified object and sends any supplied data over the network. Once
HttpSendRequest succeeds, you can read the response by using the InternetReadFile
function.
Another cool feature of the WinInet HTTP functions is the ability to use the Secure

Sockets Layer (SSL). This is especially helpful if you're developing a client/server system
to send confidential information over the Internet. For example, if you're developing a
purchasing system that needs to send credit card numbers over the Internet, using some
type of secure communications is necessary. Otherwise, you'll probably start losing
customers very quickly.
Currently, I'm developing a Windows-based Internet purchasing system for a client. Not

too long ago the client asked me to upgrade all of the product communications to use SSL.
Since I'm using WinInet for all Internet communications throughout the app, the upgrade
required very little effort. In fact, it was as simple as adding INTERNET_FLAG_ SECURE
(synonymous with https) on all calls to HttpOpenRequest and changing the port value
used by InternetConnect to INTERNET_DEFAULT_HTTPS_ PORT. By making these simple
changes, all information passed between the app and the server is now encrypted and
secure. And best of all, it's transparent to the user of the WinInet-based program. In fact,
if a developer didn't know better, she might not even realize that the
encryption/decryption is taking place behind the scenes. However, since using SSL is
obviously going to slow things down a bit, it's wise to only use SSL on requests that
contain confidential information.
Figure 17 shows how to make a secure HTTP request. Since the request uses

INTERNET_FLAG_ SECURE, the data string "CreditCard=0123456789" will be encrypted
before it is sent. The response from the Web server will also be encrypted, but before you
begin to read the file WinInet will have decrypted it for you already.

페이지 9 / 12Internet Client SDK Part II: Dress Your Applications for Success with Wi...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

At this point, you can probably appreciate the simplicity of InternetOpenUrl. But after
mastering the process of using the straight FTP and HTTP functions, you'll appreciate even
more the flexibility and control you have over the communications functionality.

Visual C++ WinInet Classes

If you're an MFC developer, you'll be glad to know that beginning with version 4.2, MFC

offers a set of WinInet classes to encapsulate the API functionality described in this article.
But even if you're not an MFC guru, you may find that the MFC object-oriented approach
fits better into your application design. The MFC WinInet classes offer plenty of
advantages. Not only do the classes use familiar MFC file input and output, you get other
object-oriented features like default parameters and exception handling. Plus, the classes
automatically clean up open Internet handles and connections.

Figure 18: WinInet MFC classes

Figure 18 illustrates how the WinInet classes fit into the MFC hierarchy. Each of the
WinInet MFC classes encapsulates functional groups of the WinInet API. For example,
CInternetSession encapsulates the InternetOpen and InternetConnect functions.
CFtpConnection encapsulates FTP-specific functions like FtpSetCurrentDirectory,
FtpGetFile, and FtpPutFile. This object-oriented approach is easier for many developers to
understand and implement.
Let's take a brief look at how you can use these classes in a simple MFC application.

Figure 19 contains the code from a sample I wrote called MyFTP. You can download it
from the link at the top of this article. I minimized error checking and exception handling
to keep things simple and easy to understand, so enhancing the code is up to you.

페이지 10 / 12Internet Client SDK Part II: Dress Your Applications for Success with ...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

Figure 20: Connecting to an FTP server

MyFTP is a dialog-based application that performs the most common FTP functions.
When the application starts, it checks for a connection to the Internet. If it cannot find a
valid connection, it will invoke and establish an automatic dial-up connection (see the call
to InternetAutodial in CMyFTPApp::InitInstance). Press Connect and type in the name of
the FTP server, a user name, and a password for the FTP server you want a connection to
(see Figure 20). Once you're successfully connected to an FTP server, the right-hand list
box will be populated with the files and directories available on the FTP server. Click on a
file in the FTP server list box and press the << (Get) button. After the file is successfully
downloaded, it will show up in the local list box (see Figure 21).

Figure 21: Local list box

Some of the functionality requires that you have write permissions on the FTP server
(put file, create directory, delete file, and so on). If you have an FTP account with your
ISP, you can connect to that FTP server and log in with your user name and password.
Then you should be able to test this functionality as well.
Notice the status bar located on the bottom of the dialog box. Each time you send a

request, the status will be updated with the current status text. I accomplished this by
deriving my own class, CMyFTPSession, from CInternetSession and overriding the
OnStatusCallback virtual method (see Figure 19). Inside my implementation of
OnStatusCallback, I simply send a message to the dialog telling it to update the status bar
text.
After you study the code, you'll notice that the API handle hierarchies and dependencies

are evident in the MFC classes as well. There is really not much different about using the

페이지 11 / 12Internet Client SDK Part II: Dress Your Applications for Success with ...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

MFC classes except for the object-oriented nature of the design. If you're like me, a piece
of code is worth a thousand words. Hopefully this sample helps you understand the nitty-
gritty details of using the WinInet MFC classes.

Conclusion

WinInet is another valuable tool found in the Internet Client SDK. It helps developers by

providing a high-level API capable of making their applications Internet-aware. This
encapsulation makes it possible for developers to forget about the underlying protocol
specifics and concentrate on general communication functionality. Not only does WinInet
provide dial-up capabilities, it also provides support for HTTP, FTP, and Gopher sessions. If
you're looking for something even simpler, WinInet provides functions to support generic
URL browsing through any of the protocols.
Even as protocol specifications change, the application's interface to WinInet will remain

the same. But even more importantly, WinInet gives developers the flexibility they need to
implement customized Internet application strategies.
The WinInet API was designed to be easy to learn and use for most developers who are

familiar with Win32. To accommodate the legions of MFC developers out there, Microsoft
also designed WinInet MFC classes that encapsulate the WinInet functionality.

See Internet Client SDK Part III: Common Controls

From the December 1997 issue of Microsoft Interactive Developer. Get it at your local
newsstand, or better yet, subscribe.

페이지 12 / 12Internet Client SDK Part II: Dress Your Applications for Success with ...

2006-09-12http://www.microsoft.com/mind/1297/inet/inet.asp

