

Abstract
Though there are different ways
to enumerate processes in
Windows, none of them can be
used on every version of the
system. Some techinques that
work perfectly on Windows NT fail
on Windows 95 and vice versa.
This article describes five different
ways to enumerate Windows
processes, which you can easily
combine into one truly universal
function.

Home Code Samples Articles Links
<< Hide left pane Leave feedback

Enumerating Windows Processes

Introduction
Win32 offers several methods to enumerate currently running processes. Unfortunately, none of them works on every Win32
platform. Software developers have to combine several methods in their applications to ensure they will run on every
Windows version.
In this article we will examine the following enumeration methods:
� Using Process Status Helper (PSAPI) library
� Using ToolHelp32 API
� Using the undocumented ZwQuerySystemInformation function
� Using performance counters
� Using Windows Management Instrumentation interfaces

We will illustrate each method with a function that follows the prototype shown below:

// this callback function is called for each proces s in the enumeration
typedef BOOL (CALLBACK * PFNENUMPROC)(
 IN DWORD dwProcessId, // process identifier
 IN PCTSTR pszProcessName, // process name
 IN LPARAM lParam // application-defined parameter
);

// this function enumerates processes
BOOL EnumProcesses_Method(
 IN PCTSTR pszMachineName, // computer name
 IN PFNENUMPROC pfnEnumProc, // application-defined callback function
 IN LPARAM lParam // application-defined parameter
);

The enumeration function calls an application-defined callback function for each running process, passing process information
as the callback function arguments. The callback function is supposed to deal with the process information in according to
the application logic. For example, in the demo application for this article, it adds an item to the list of processes.
Some of methods covered in this article allows enumeration of processes on remote computers, therefore the enumeration
function prototype has the pszMachineName parameter. The NULL value for this parameter means enumeration of processes
on the local machine.

Method 1. Using Process Status Helper Library
The Process Status Helper library, also known as PSAPI, offers a set of functions that return certain information about
processes and device drivers. The library is shipped with Windows 2000/XP and also available as a redistributable package
for Windows NT 4.0.
For process enumeration purposes, PSAPI provides the EnumProcesses function that returns an array of identifiers of
currently running processes. Below is the source code of the EnumProcesses_PsApi function that implements process
enumeration using PSAPI.

 Listing 1. Enumerating processes with PSAPI
#include <psapi.h>

BOOL WINAPI EnumProcesses_PsApi(
 IN LPCTSTR pszMachineName,
 IN PFNENUMPROC pfnEnumProc,
 IN LPARAM lParam
)
{
 _ASSERTE(pfnEnumProc != NULL);

 if (pszMachineName != NULL)
 return SetLastError(ERROR_INVALID_PARAMETER), FALSE;

 HINSTANCE hPsApi;
 BOOL (WINAPI * pEnumProcesses)(DWORD *, DWORD, DWORD *);
 BOOL (WINAPI * pEnumProcessModules)(HANDLE, HMO DULE*, DWORD, DWORD*);
 BOOL (WINAPI * pGetModuleFileNameEx)(HANDLE, HM ODULE, LPTSTR, DWORD);

 // load PSAPI.DLL
 hPsApi = LoadLibrary(_T("psapi.dll"));
 if (hPsApi == NULL)
 return FALSE;

 // find necessary functions in PSAPI.DLL
 *(FARPROC *)&pEnumProcesses =
 GetProcAddress(hPsApi, "EnumProcesses");
 *(FARPROC *)&pEnumProcessModules =
 GetProcAddress(hPsApi, "EnumProcessModules");
#ifdef UNICODE
 *(FARPROC *)&pGetModuleFileNameEx =
 GetProcAddress(hPsApi, "GetModuleFileNameExW");
#else
 *(FARPROC *)&pGetModuleFileNameEx =
 GetProcAddress(hPsApi, "GetModuleFileNameExA");
#endif

 if (pEnumProcesses == NULL ||
 pEnumProcessModules == NULL ||
 pGetModuleFileNameEx == NULL)
 {
 FreeLibrary(hPsApi);
 return SetLastError(ERROR_PROC_NOT_FOUND), FALSE;
 }

 // get default process heap handle

Download source code for this article (.zip, 193KB)
Original article (in Russian)

 HANDLE hHeap = GetProcessHeap();

 DWORD dwError;
 DWORD cbReturned;
 DWORD cbAlloc = 128 ;
 DWORD * pdwIds = NULL;

 OSVERSIONINFO osvi;
 osvi.dwOSVersionInfoSize = sizeof(osvi);
 GetVersionEx(&osvi);

 DWORD dwSystemId = 8;
 if (osvi.dwMajorVersion >= 5)
 dwSystemId = (osvi.dwMinorVersion == 0) ? 2 : 4;

 do
 {
 cbAlloc *= 2;

 if (pdwIds != NULL)
 HeapFree(hHeap, 0, pdwIds);

 // allocate memory for the array of identifiers
 pdwIds = (DWORD *)HeapAlloc(hHeap, 0, cbAlloc);
 if (pdwIds == NULL)
 {
 FreeLibrary(hPsApi);
 return SetLastError(ERROR_NOT_ENOUGH_MEMORY), FALSE;
 }

 // get processes identifiers
 if (!pEnumProcesses(pdwIds, cbAlloc, &cbReturned))
 {
 dwError = GetLastError();

 HeapFree(hHeap, 0, pdwIds);
 FreeLibrary(hPsApi);
 return SetLastError(dwError), FALSE;
 }
 }
 while (cbReturned == cbAlloc);

 // now enumerate all identifiers in the arrary and call
 // the user-defined callback function for every pro cess
 for (DWORD i = 0; i < cbReturned / sizeof (DWORD); i++)
 {
 BOOL bContinue;
 DWORD dwProcessId = pdwIds[i];

 // handle two special cases: Idle process (0) and
 // System process, which identifier depends on the
 // operating system version
 if (dwProcessId == 0)
 {
 bContinue = pfnEnumProc(0, _T("Idle"), lParam);
 }
 else if (dwProcessId == dwSystemId)
 {
 bContinue = pfnEnumProc(dwSystemId, _T("System"), lParam);
 }
 else
 {
 HANDLE hProcess;
 HMODULE hExeModule;
 DWORD cbNeeded;
 TCHAR szModulePath[MAX_PATH];
 LPTSTR pszProcessName = NULL;

 // open process handle
 hProcess = OpenProcess(
 PROCESS_QUERY_INFORMATI ON|PROCESS_VM_READ,
 FALSE, dwProcessId);
 if (hProcess != NULL)
 {
 if (pEnumProcessModules(hProcess, &hExeModule,
 sizeof (HMODULE), &cbNeeded))
 {
 if (pGetModuleFileNameEx(hProcess, hExeModule,
 szModu lePath, MAX_PATH))
 {
 pszProcessName =
 _tcsrchr(szModulePath, _T('\\'));
 if (pszProcessName == NULL)
 pszProcessName = szModu lePath;
 else
 pszProcessName++;
 }
 }
 }

 CloseHandle(hProcess);

 // call the callback function
 bContinue = pfnEnumProc(dwProcessId, ps zProcessName, lParam);
 }

 if (!bContinue)
 break ;
 }

 HeapFree(hHeap, 0, pdwIds);
 FreeLibrary(hPsApi);

 return TRUE;
}

Note that we link with PSAPI.DLL dynamically, loading the library with LoadLibrary and then obtaining addresses of
necessary functions using GetProcAddress. This will allow us to include this function into an application that has to run on

Windows 9x/Me, where PSAPI.DLL is not available. We will use this technique when implementing other enumeration
methods, too.
The EnumProcesses function does not provide a way to know how much space is needed to receive all the identifiers. To
deal with this limitation, we call EnumProcesses in a loop, increasing the the buffer size until the returned array size
becomes less than the buffer size we allocated.
Since we want to obtain not only identifiers of processes but also their names, we have to do some additional work. For each
process, we first get its handle with OpenProcess and then call EnumProcessModules, which returns a list of modules
loaded into the process address space. The first module in the list is always the module representing the EXE-file used to
create the process, so we get this handle and pass it to the GetModuleFileNameEx function (which is also a part of PSAPI)
to obtain a path to the EXE-file. Finally, we strip path information from the file name and use this value as a process name.
Note the special handling of two processes in the source code of EnumProcesses_PsApi. We need to handle the System
Idle Process, which identifier is always zero, and the System Process, which identifier depends on the operating system
version, separately, because OpenProcess does not allow to obtain a handle to these processes and fails with
ERROR_ACCESS_DENIED error.
If you run the demo application accompanying this article, you'll find that for at least one process the name is returned as
"(name unavailable)". Using the Task Manager, it is easy to determine that this process is CSRSS.EXE. As it turns out, the
system assigns such a security descriptor for this process, so it doesn't allow opening the process with access rights
necessary to obtain its name.
On one hand, we could use the same approach as with two system processes. However, there is no guarantee that the
identifier of this process is always the same. On the other hand, this issue can be resolved by enabling the SE_DEBUG_NAME
privilege. When this privilege is turned on, the calling thread can open process handles with any access rights regardless the
security descriptor assigned to the process. Since this privilege opens great opportunities to peneterate system security, it is
normally granted only to system administrators. Because of this, we decided to not include the code for enabling this
privilege into the EnumProcesses_PsApi function. If necessary, you can enable this privilege before calling
EnumProcesses_PsApi, and the function will be able to return a name for the CSRSS.EXE process as well.

Method 2. Using ToolHelp32 API
Microsoft Corporation had added a set of functions named ToolHelp API to Windows 3.1 to get independed software vendors
access to system information which was previously available only to Microsoft engineers. When Windows 95 was born, these
functions migrated into the new system with ToolHelp32 name.
The Windows NT operating system from very beginning provides an interface known as "performance data" to obtain similar
information. This interface is very intricate and inconvenient (to be honest, beginning with Windows NT 4.0, Microsoft
provides the Performance Data Helper library that greatly simplifies accessing performance data; we will use this library in
one of our methods). Rumors are the Windows NT development team was refusing to include ToolHelp32 API into the system
for long time, but anyway, starting with Windows 2000, you can see this API in the Windows NT family of operating systems.
When using ToolHelp32 API, we first create a snapshot of the list of processes with the CreateToolhelp32Snapshot
function and then walk through the list using Process32First and Process32Next functions. The PROCESSENTRY32
structure, which is filled by these functions, contains all the information we need. Below is the source code of the
EnumProcesses_ToolHelp function that implements process enumeration using ToolHelp32 API.

 Listing 2. Enumerating processes with ToolHelp32 API
#include <tlhelp32.h>

BOOL EnumProcesses_ToolHelp(
 IN LPCTSTR pszMachineName,
 IN PFNENUMPROC pfnEnumProc,
 IN LPARAM lParam
)
{
 _ASSERTE(pfnEnumProc != NULL);

 if (pszMachineName != NULL)
 return SetLastError(ERROR_INVALID_PARAMETER), FALSE;

 HINSTANCE hKernel;
 HANDLE (WINAPI * pCreateToolhelp32Snapshot)(DWO RD, DWORD);
 BOOL (WINAPI * pProcess32First)(HANDLE, PROCESS ENTRY32 *);
 BOOL (WINAPI * pProcess32Next)(HANDLE, PROCESSE NTRY32 *);

 // get handle of KERNEL32.DLL
 hKernel = GetModuleHandle(_T("kernel32.dll"));
 _ASSERTE(hKernel != NULL);

 // find necessary entrypoints in KERNEL32.DLL
 *(FARPROC *)&pCreateToolhelp32Snapshot =
 GetProcAddress(hKernel, "CreateToolhelp32Snapshot");
#ifdef UNICODE
 *(FARPROC *)&pProcess32First =
 GetProcAddress(hKernel, "Process32FirstW");
 *(FARPROC *)&pProcess32Next =
 GetProcAddress(hKernel, "Process32NextW");
#else
 *(FARPROC *)&pProcess32First =
 GetProcAddress(hKernel, "Process32First");
 *(FARPROC *)&pProcess32Next =
 GetProcAddress(hKernel, "Process32Next");
#endif

 if (pCreateToolhelp32Snapshot == NULL ||
 pProcess32First == NULL ||
 pProcess32Next == NULL)
 return SetLastError(ERROR_PROC_NOT_FOUND), FALSE;

 HANDLE hSnapshot;
 PROCESSENTRY32 Entry;

 // create a snapshot
 hSnapshot = pCreateToolhelp32Snapshot(TH32CS_SN APPROCESS, 0);
 if (hSnapshot == INVALID_HANDLE_VALUE)
 return FALSE;

 // get information about the first process
 Entry.dwSize = sizeof (Entry);
 if (!pProcess32First(hSnapshot, &Entry))
 return FALSE;

 // enumerate other processes
 do
 {

 LPTSTR pszProcessName = NULL;

 if (Entry.dwSize > offsetof(PROCESSENTRY32, szExeFile))
 {
 pszProcessName = _tcsrchr(Entry.szExeFi le, _T('\\'));
 if (pszProcessName == NULL)
 pszProcessName = Entry.szExeFile;
 }

 if (!pfnEnumProc(Entry.th32ProcessID, pszProcessName, lParam))
 break ;

 Entry.dwSize = sizeof (Entry);
 }
 while (pProcess32Next(hSnapshot, &Entry));

 CloseHandle(hSnapshot);
 return TRUE;
}

Before calling Process32First or Process32Next, we have to initialize the dwSize field of the PROCESSENTRY32
structure with the structure size. The functions, in their turn, fill this field with the number of bytes stored into the structure.
We compare this value with the offset of the szExeFile field to determine whether the process name was returned.

Method 3. Using the ZwQuerySystemInformation function
Despite the fact that a documented way exists to obtain the list of processes using performance data, the Windows NT Task
Manager never used it. Instead, it calls the undocumented ZwQuerySystemInformation function. This function is exported
from NTDLL.DLL and provides access to various system information and, in particular, to the list of currently running
processes.
The ZwQuerySystemInformation function has the following prototype [2]:

NTSTATUS ZwQuerySystemInformation(
 IN ULONG SystemInformationClass, // information class
 IN OUT PVOID SystemInformation, // information buffer
 IN ULONG SystemInformationLength, // size of information buffer
 OUT PULONG ReturnLength OPTIONAL // receives information length
);

SystemInformationClass
Specifies the type of the information to retrieve. We are interested in the SystemProcessesAndThreadsInformation (5).
SystemInformation
Pointer to a buffer that receives the information requested.
SystemInformationLength
Specifies the size of the receiving buffer.
ReturnLength
Optional pointer to a variable into which the function stores the number of bytes actually written into the output buffer.
The format of processes and threads information buffer is described by the SYSTEM_PROCESS_INFORMATION structure,
which contains almost all the information displayed by the Task Manager. Below you can find the source code for the
EnumProcesses_NtApi function that implements process enumeration using ZwQuerySystemInformation.

 Listing 3. Enumerating processes using ZwQuerySystemInformation
typedef LONG NTSTATUS;
typedef LONG KPRIORITY;

#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)

#define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS) 0xC0000004L)

#define SystemProcessesAndThreadsInformation 5

typedef struct _CLIENT_ID {
 DWORD UniqueProcess;
 DWORD UniqueThread;
} CLIENT_ID;

typedef struct _UNICODE_STRING {
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;
} UNICODE_STRING;

typedef struct _VM_COUNTERS {
 SIZE_T PeakVirtualSize;
 SIZE_T VirtualSize;
 ULONG PageFaultCount;
 SIZE_T PeakWorkingSetSize;
 SIZE_T WorkingSetSize;
 SIZE_T QuotaPeakPagedPoolUsage;
 SIZE_T QuotaPagedPoolUsage;
 SIZE_T QuotaPeakNonPagedPoolUsage;
 SIZE_T QuotaNonPagedPoolUsage;
 SIZE_T PagefileUsage;
 SIZE_T PeakPagefileUsage;
} VM_COUNTERS;

typedef struct _SYSTEM_THREAD_INFORMATION {
 LARGE_INTEGER KernelTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER CreateTime;
 ULONG WaitTime;
 PVOID StartAddress;
 CLIENT_ID ClientId;
 KPRIORITY Priority;
 KPRIORITY BasePriority;
 ULONG ContextSwitchCount;
 LONG State;
 LONG WaitReason;
} SYSTEM_THREAD_INFORMATION, * PSYSTEM_THREAD_INFORMATION;

typedef struct _SYSTEM_PROCESS_INFORMATION {

 ULONG NextEntryDelta;
 ULONG ThreadCount;
 ULONG Reserved1[6];
 LARGE_INTEGER CreateTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER KernelTime;
 UNICODE_STRING ProcessName;
 KPRIORITY BasePriority;
 ULONG ProcessId;
 ULONG InheritedFromProcessId;
 ULONG HandleCount;
 ULONG Reserved2[2];
 VM_COUNTERS VmCounters;
#if _WIN32_WINNT >= 0x500
 IO_COUNTERS IoCounters;
#endif
 SYSTEM_THREAD_INFORMATION Threads[1];
} SYSTEM_PROCESS_INFORMATION, * PSYSTEM_PROCESS_INFORMATION;

BOOL EnumProcesses_NtApi(
 IN PCTSTR pszMachineName,
 IN PFNENUMPROC pfnEnumProc,
 IN LPARAM lParam
)
{
 _ASSERTE(pfnEnumProc != NULL);

 if (pszMachineName != NULL)
 return SetLastError(ERROR_INVALID_PARAMETER), FALSE;

 HINSTANCE hNtDll;
 NTSTATUS (WINAPI * pZwQuerySystemInformation)(U INT, PVOID,
 ULONG, PULONG);

 // get NTDLL.DLL handle
 hNtDll = GetModuleHandle(_T("ntdll.dll"));
 _ASSERTE(hNtDll != NULL);

 // find ZwQuerySystemInformation address
 *(FARPROC *)&_ZwQuerySystemInformation =
 GetProcAddress(hNtDll, "ZwQuerySystemInformation");
 if (_ZwQuerySystemInformation == NULL)
 return SetLastError(ERROR_PROC_NOT_FOUND), FALSE;

 // get default process heap handle
 HANDLE hHeap = GetProcessHeap();

 NTSTATUS Status;
 ULONG cbBuffer = 0x8000 ;
 PVOID pBuffer = NULL;

 // it is difficult to predict what buffer size will be
 // enough, so we start with 32K buffer and increase its
 // size as needed
 do
 {
 pBuffer = HeapAlloc(hHeap, 0, cbBuffer);
 if (pBuffer == NULL)
 return SetLastError(ERROR_NOT_ENOUGH_MEMORY), FALSE;

 Status = pZwQuerySystemInformation(
 SystemProcessesAndThreadsInform ation,
 pBuffer, cbBuffer, NULL);

 if (Status == STATUS_INFO_LENGTH_MISMATCH)
 {
 HeapFree(hHeap, 0, pBuffer);
 cbBuffer *= 2;
 }
 else if (!NT_SUCCESS(Status))
 {
 HeapFree(hHeap, 0, pBuffer);
 return SetLastError(Status), FALSE;
 }
 }
 while (Status == STATUS_INFO_LENGTH_MISMATCH);

 PSYSTEM_PROCESS_INFORMATION pProcesses =
 (PSYSTEM_PROCESS_INFORMATION)pBuffer;

 for (;;)
 {
 PCWSTR pszProcessName = pProcesses->Process Name.Buffer;
 if (pszProcessName == NULL)
 pszProcessName = L"Idle" ;

#ifdef UNICODE

 if (!pfnEnumProc(pProcesses->ProcessId, pszProcessNam e, lParam))
 break ;

#else

 CHAR szProcessName[MAX_PATH];
 WideCharToMultiByte(CP_ACP, 0, pszProcessName, - 1,
 szProcessName, MAX_PATH , NULL, NULL);

 if (!pfnEnumProc(pProcesses->ProcessId, szProcessName , lParam))
 break ;

#endif
 if (pProcesses->NextEntryDelta == 0)
 break ;

 // find the address of the next process structure
 pProcesses = (PSYSTEM_PROCESS_INFORMATION)(((LPBYTE)pProcesses)
 + pProcesses->NextEntryDelt a);
 }

 HeapFree(hHeap, 0, pBuffer);
 return TRUE;
}

When calling ZwQuerySystemInformation, it is difficult to predict which buffer size will be enough to receive all the
information. Thus, we start with a 32K buffer and increase its size until the function returns success.
The SYSTEM_PROCESS_INFORMATION structure is a variable-size structure, the NextEntryDelta field specifies the
offset to the next structure in the array. This field allows us to ignore the difference in size of the fixed part of the structure
between Windows NT 4.0 and Windows 2000, where the IoCounters field was added to the structure.

Method 4. Using Performance Counters
As it was already noted, the Windows NT operating system from very beginning had an interface to obtain various system
information in the form of performance counters. This interface is far from intuitive. In order to get the information, you
have to read a value with a specially formed name from the HKEY_PERFORMANCE_DATA registry key. The information is
returned in the form of deeply nested structures, many of which are of variable size. Dealing with these data structures
requires a certain degree of diligence.
Fortunately, the situation had changed with introducing the Performance Data Helper (PDH) library in Windows NT 4.0. This
library provides more convenient interface to performance data. However, the library wasn't being shipped with Windows NT
4.0, it was available as a redistributable in the Microsoft Platform SDK. Beginning with Windows 2000, PDH became a part of
the system.
A detailed discussion of performance monitoring is beyond the scope of this article. Just let me note that the Windows NT
performance monitoring architecture defines a concept of an object, for which performance counting is made. Examples of
objects are processor and disk drive. Each object can have one or more instances along with a set of performance counters.
Our ultimate goal is to enumerate all instances of the object named "Process", finding the value of the performance counter
"ID Process" for each instance. Below is the code of the EnumProcesses_PerfData function, which uses PDH for process
enumeration.

 Listing 4. Enumerating processes using PDH
We return instance names as process names. If you run the demo application, you'll see that instance names are names of
EXE-files of corresponding processes without an extension.
Object names and performance counter names are localizable. That means that, for example, on Russian version of Windows
NT, process object and process identifier counter are no longer called "Process" and "ID Process", localized names are used
instead. To get the localized names and format a full path to the performance counter we are interested in, we use a helper
function named PerfFormatCounterPath. Its source code is provided below.

 Listing 5. PerfFormatCounterPath source code
static PDH_STATUS PerfFormatCounterPath(
 IN HINSTANCE hPdh,
 IN LPCTSTR pszMachineName,
 IN LPWSTR pszPath,
 IN ULONG cchPath
)
{
 _ASSERTE(hPdh != NULL);
 _ASSERTE(_CrtIsValidPointer(pszPath, cchPath * sizeof (WCHAR), 1));

 PDH_STATUS (WINAPI * pPdhMakeCounterPath)(
 PDH_COUNTER_PATH_ELEMENTS_W *, LPWSTR, LPDW ORD, DWORD);
 PDH_STATUS (WINAPI * pPdhLookupPerfNameByIndex) (
 LPCWSTR, DWORD, LPWSTR, LPDWORD);

 *(FARPROC *)&pPdhMakeCounterPath =
 GetProcAddress(hPdh, "PdhMakeCounterPathW");
 *(FARPROC *)&pPdhLookupPerfNameByIndex =
 GetProcAddress(hPdh, "PdhLookupPerfNameByIndexW");

 if (pPdhMakeCounterPath == NULL ||
 pPdhLookupPerfNameByIndex == NULL)
 return ERROR_PROC_NOT_FOUND;

 PDH_STATUS Status;
 DWORD cbName;
 WCHAR szObjectName[80];
 WCHAR szCounterName[80];

 LPWSTR pszMachineW = NULL;

#ifndef _UNICODE
 WCHAR szMachineName[256];
 if (pszMachineName != NULL)
 {
 MultiByteToWideChar(CP_ACP, 0, pszMachineName, - 1,
 szMachineName, 256);
 pszMachineW = szMachineName;
 }
#else
 pszMachineW = (LPWSTR)pszMachineName;
#endif

 // find localize Process object name
 cbName = sizeof (szObjectName);
 Status = pPdhLookupPerfNameByIndex(pszMachineW, 230 ,
 szObjectName , &cbName);
 if (Status != ERROR_SUCCESS)
 return Status;

 // find localized ID Process counter name
 cbName = sizeof (szCounterName);
 Status = pPdhLookupPerfNameByIndex(pszMachineW, 784 ,
 szCounterNam e, &cbName);
 if (Status != ERROR_SUCCESS)
 return Status;

 PDH_COUNTER_PATH_ELEMENTS_W pcpe;
 pcpe.szMachineName = pszMachineW;
 pcpe.szObjectName = szObjectName;
 pcpe.szInstanceName = L "*" ;
 pcpe.szParentInstance = NULL;
 pcpe.dwInstanceIndex = 0;
 pcpe.szCounterName = szCounterName;

 // format full counter path
 return pPdhMakeCounterPath(&pcpe, pszPath, &cchPath, 0);
}

We use PdhLookupPerfNameByIndex to obtain localized names from corresponding indices. Indices of standard objects
and performance counters are well-defined and don't depend on the operating system version, thus it is safe to specify them
directly in the code.
Note, among all process enumeration methods we discussed so far, this is the first method that allows to enumerate
processes on another machine. All we have to do is to set the machine name in the szMachineName field of the
PDH_COUNTER_PATH_ELEMENTS structure.

Method 5. Using Windows Management Instrumentation
Windows Management Instrumentation (WMI) is Microsoft implementation of the Web-Based Enterprise Management
(WBEM) initiative. WBEM provides a point of integration through which data from different management sources can be
uniformly accessed, and it complements and extends existing management protocols such as SNMP. WBEM is based on the
Common Information Model (CIM) schema, which is an industry standard maintained by DMTF (Distributed Management
Task Force). WMI is included in Windows 2000 and Windows XP, but is also available as a redistributable package for
Windows 9x/Me and Windows NT 4.0.
Any detailed discussion of WMI extends beyond the scope of this article. I'll just present the code that enumerates processes
using WMI interfaces.

 Listing 6. Enumerating processes using WMI interfaces
#include <comdef.h>
#include <SshWbemHelpers.h>

BOOL EnumProcesses_Wmi(
 IN LPCTSTR pszMachineName,
 IN PFNENUMPROC pfnEnumProc,
 IN LPARAM lParam
)
{
 _ASSERTE(pfnEnumProc != NULL);

 try
 {
 HRESULT hRes;
 TCHAR szServer[256];
 _bstr_t bstrServer;
 IWbemLocatorPtr spLocator;
 IWbemServicesPtr spServices;
 IEnumWbemClassObjectPtr spEnum;
 IWbemClassObjectPtr spObject;
 ULONG ulCount;

 // create WBEM locator object
 hRes = CoCreateInstance(__uuidof(WbemLocato r), NULL,
 CLSCTX_INPROC_SERVER, _ _uuidof(IWbemLocator),
 (PVOID *)&spLocator);
 if (FAILED(hRes))
 _com_issue_error(hRes);

 if (pszMachineName == NULL)
 lstrcpy(szServer, _T("root\\cimv2"));
 else
 {
 wsprintf(szServer, _T("\\\\%s\\root\\cimv2"),
 pszMachineName);
 }

 // connect with the specified machine
 hRes = spLocator->ConnectServer(_bstr_t(L"root\\cimv2"), NULL,
 NULL, NULL, 0, NULL, NULL,
 &spServices);
 if (FAILED(hRes))
 _com_issue_error(hRes);

 // create enumerator
 hRes = spServices->CreateInstanceEnum(_bstr _t(L"Win32_Process"),
 WBEM_FLAG_SHALLOW|WBE M_FLAG_FORWARD_ONLY,
 NULL, &spEnum);
 if (FAILED(hRes))
 _com_issue_error(hRes);

 // enumerate processes
 while (spEnum->Next(WBEM_INFINITE, 1,
 &spObject, &ulCount) == S_OK)
 {
 _variant_t valId;
 _variant_t valName;

 // get process identifier
 hRes = spObject->Get(L"ProcessId" , 0, &valId, NULL, NULL);
 if (FAILED(hRes))
 {
 spObject = NULL;
 continue ;
 }

 // get process name
 hRes = spObject->Get(L"Name" , 0, &valName, NULL, NULL);
 if (FAILED(hRes))
 {
 spObject = NULL;
 continue ;
 }

 _ASSERTE(valId.vt == VT_I4);
 _ASSERTE(valName.vt == VT_BSTR);

 if (!pfnEnumProc(valId.lVal, (LPCTSTR)_bstr_t(valName),
 lParam))
 break ;

Leave your comment

 spObject = NULL;
 }
 }
 catch (_com_error& err)
 {
 return SetLastError(err.Error()), FALSE;
 }

 return TRUE;
}

The fact that WMI is based on the COM technology saves us from explicit loading of necessary libraries as we did in all
previous methods. The same fact requires you to initialize COM run-time before calling the process enumeration function. In
an MFC application you can do it with AfxOleInit, in other cases you should use CoInitialize or CoInitializeEx functions.
Furthermore, using WMI requires initialization of the COM security with a call to CoInitializeSecurity:

 CoInitializeSecurity(
 NULL,
 - 1,
 NULL,
 NULL,
 RPC_C_AUTHN_LEVEL_CONNECT,
 RPC_C_IMP_LEVEL_IMPERSONATE,
 NULL,
 EOAC_NONE,
 0);

Note, same as the previous process enumeration method, this method allows enumeration of processes on remote machines.
To enumerate processes remotely, you should specify computer name to IWbemLocator::ConnectServer.
Important note: Remote process enumeration in the form as it presented in this article will work only if the current user of
the local machine has administrative privileges on the remote machine. The samples provided above do not allow to change
credentials with which a connection to the remote machine is made. To specify alternative credentials in PDH method, you
should call NetUseAdd or WNetAddConnection2 to establish a connection with IPC$ resource on the remote machine prior
to calling the enumeration function. In WMI method, you should use standard COM methods for supplying alternative
credentials.

Wrap Up
Well, we've seen five different methods to enumerate processes on Windows. None of them is universal, since there is alvays
a Windows version there a particular method won't run. The table below summarizes applicability of the described methods.

Using this table and the functions provided in the previous sections, it is easy to make a function for process enumeration,
which will work on all Windows versions. For example, if you want to use PSAPI on Windows NT/2000/XP and ToolHelp32 API
on Windows 9x/Me, such a function can look like following:

BOOL MyEnumProcesses(
 IN PFNENUMPROC pfnEnumProc,
 IN LPARAM lParam
)
{
 OSVERSIONINFO osvi;
 osvi.dwOSVersionInfoSize = sizeof (osvi);

 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS)
 return EnumProcesses_ToolHelp(pfnEnumProc, lParam);
 else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT)
 return EnumProcesses_PsApi(pfnEnumProc, lParam);
 else
 return SetLastError(ERROR_CALL_NOT_IMPLEMENTED), FALSE;
}

This acticle is accompanied by a small demo application, ambitiously named Process Viewer, that demonstrates all five
methods presented in the article. The implementation of all methods is in enumproc.h and enumproc.cpp files. I tried to
arrange sources in such a way to make easier their reuse in other projects. To build the application you will need Microsoft
Platform SDK. Happy coding!

References
1. HOWTO: Enumerate Applications in Win32, Q175030, Microsoft Knowledge Base.
2. Gary Nebbett, Windows NT/2000 Native API Reference. New Riders Publishing, 2000.
3. INFO: Using PDH APIs Correctly in a Localized Language, Q287159, Microsoft Knowledge Base.

This arctile was first published on RSDN.ru.
Copyright (c) 2001-2003 The RSDN Group. All rights reserved.

Windows 9x/Me Windows NT 4.0 Windows 2000/XP
Method 1 No Yes* Yes
Method 2 Yes No Yes
Method 3 No Yes Yes
Method 4 No Yes* Yes
Method 5 Yes* Yes* Yes
* Requires installation of additional components.

From:
Subject:
Comment:

Last modified on Fri, Feb 10 2006

 Submit

Best viewed with Microsoft Internet Explorer 4.0+ Send feedback to: me@alexfedotov.com

